Minggu, 06 Desember 2009

momentum,implus dan tumbukan

Definisi Momentum

Momentum adalah sebuah nilai dari perkalian materi yang bermassa / memiliki bobot dengan pergerakan / kecepatan. Dalam Fisika momentum dilambangkan dengan huruf ‘p’, secara matematis momentum dapat dirumuskan :

p= m . v
p = momentum, m = massa, v = kecepatan / viscositas (dalam fluida)

Momentum akan berubah seiring dengan perubahan massa dan kecepatan. Semakin cepat pergerakan suatu materi/benda akan semakin besar juga momentumnya. Semakin besar momentum, maka semakin dahsyat kekuatan yang dimiliki oleh suatu benda. Jika materi dalam keadaan diam, maka momentumnya sama dengan nol. Sebaliknya semakin cepat pergerakannya, semakin besar juga momentumnya. (Filosofi : Jika manusia tidak mau bergerak / malas, maka hasil kerjanya sama dengan nol).

Definisi Impuls

Impuls adalah selisih dari momentum atau momentum awal dikurangi momentum akhir. Dalam Fisika impuls dilambangkan dengan simbol / huruf “I”. Secara matematis impuls dirumuskan :

I = p2 – p1 = ∆p
I = m.v2 – m.v1
I = m(v2 – v1)
I = m. ∆v

Karena m = F/a (bisa dibaca di Aplikasi Hukum Newton Dalam Kehidupan) , maka :

I = F/a . ∆v
I = [F/(∆v/∆t)] . ∆v
I = F . ∆t
F = I/∆t

I = impuls, p1 = momentum awal, p2 = momentum akhir, F = gaya, ∆t = waktu sentuh, ∆v = selisih kecepatan

Nah, dari rumus F = I/∆t inilah letak pemanfaatan aplikasi momentum dan impuls. Semakin kecil waktu sentuh, maka semakin besar gaya yang akan diterima benda. Semakin lama waktu sentuh, maka semakin kecil gaya yang diterima benda.

Aplikasi Momentum dan Impuls

Mobil di desain untuk mudah penyok, hal ini bertujuan untuk memperbesar waktu sentuh untuk memperkecil gaya yang diterima oleh pengendara. Dengan demikian diharapkan, keselamatan pengemudi lebih dapat terjamin. Jika kecepatannya besar, maka gaya yang diterima akan besar, sehingga pengendara akan mengalami kecelakaan yang fatal. Jadi pesan saya jangan ngebut, walaupun mobil sudah di design sedemikian rupa.

Balon udara pada mobil juga bertujuan untuk memperlambat waktu sentuh antara kepala pengemudi dengan setir mobil. Ingat, semakin besar waktu sentuh, maka semakin kecil gaya yang akan mengenai kepala pengemudi. Sabuk pengaman juga fungsi dan cara kerjanya sama dengan balon udara pada mobil, yakni untuk mengurangi waktu sentuh antara pengemudi dengan dashboard mobil pada saat bersentuhan.

TUMBUKAN

• Berlaku

Ī£Fluar= 0

• Berlaku hukum kekekalan momentumm

v1m1+ m2v2 = m1v1′ + m2v2′

Koefisien restitusi / elastisitas tumbukan (e)

• elastis sempurna: e = 1 (energi mekanik kekal)

• elastis sebagian: 0 <>

• sama sekali tak elastis: e = 0

gaya berat

Dalam percakapan sehari-hari, sering kita dengar istilah berat. Misalnya “Amir disuruh ibunya membeli gula yang beratnya 2 kg.” Dalam fisika, kata yang dimaksudkan oleh ibu Amir seharusnya adalah massa, yaitu jumlah zat yang terkandung dalam suatu benda (selalu tetap di manapun berada).

Lalu apakah berat itu? Berat suatu benda adalah massa suatu benda yang dipengaruhi oleh percepatan gravitasi bumi, di tempat yang gravitasinya berbeda berat benda akan berubah.

Berdasarkan Hukum II Newton, berat benda dirumuskan:

w = m.g

di mana

w =
m =
g
=
gaya gravitasi bumi pada benda atau berat benda dalamNewton
massa benda, dalam kg
percepatan gravitasi bumi yang besarnya 9,8 ms-2 kadang-kadang untuk memudahkan dibulatkan menjadi 10 ms-2

Contoh 4

Berat benda yang massanya 2 kg, jika g = 9,8 ms-2 adalah:

w =
w =
w =

m g
2. 9,8
19,6 Newton.

Makin jauh dari bumi percepatan gravitasi bumi makin kecil, sehingga berat roket pada saat di A lebih besar dibandingkan roket di B.

Gambar 2.5. Roket di atas Bumi.

Semua benda yang berada di atas permukaan bumi pada jarak tertentu dari pusat bumi akan mengalami gaya gravitasi yang dinamakan gaya berat w. Gaya berat w kedudukannya pada pusat massa benda itu dan arahnya menuju pusat bumi. Beberapa gambar gaya berat benda diperlihatkan oleh gambar 2.6.

Gambar 2.6. Kedudukan Gaya Berat.

Dari gambar 2.6. nampak bahwa gaya berat (w) dapat digambarkan mengambil kedudukan tegak lurus terhadap permukaan tanah.

Dalam menyelesaikan persoalan-persoalan dinamika penempatan gaya berat dan gaya normal dalam sistem benda turut menentukan hasil yang diperoleh.

Aplikasi Hukum II Newton pada beberapa Sistem Benda

1.
Benda pada bidang miring yang licin apabila sebuah benda diletakkan di puncak bidang miring yang licin, maka benda tersebut akan meluncur turun pada bidang miring tersebut. Saat bergerak turun benda mengalami percepatan gravitasi sehingga kecepatannya makin lama makin besar.

Diagram gaya-gaya yang bekerja pada benda, diperlihatkan oleh gambar 2.7a. berikut


Gambar 2.7.
(a) beban m di atas bidang miring licin
(b) diagram gaya pada beban m


Menurut Hukum II Newton percepatan ditimbulkan oleh resultan gaya yang bekerja dan searah dengan arah geraknya. Maka dari gambar di atas diperoleh

SF = m g Sin q
Percepatan benda sepanjang bidang miring adalah:
ma
a
dengan g
q

= m g Sin q atau
= g Sin q (q dibaca teta)
= g Sin q (q dibaca teta)
= sudut kemiringan bidang

Contoh 5

Beban m yang massanya 5 kg dan percepatan gravitasi 10 ms-2 terletak di atas bidang miring licin dengan sudut kemiringan 30°. Tetukan berapa percepatan beban m!

Jawaban
Pada beban hanya bekerja gaya berat, maka percepatan beban bisa dihitung:

a = g Sin q
= 10 Sin 30
= 5 ms-2

Contoh 6

Beban m yang mengalami 5 kg dan percepatan gravitasi 10 ms-2terletak di atas bidang miring dengan sudut kemiringan 37° (Sin 37 = 0,6).
Beban mengakhiri gaya F mendatar sebesar 20 N (gambar 2.8.)
Tentukan berapa percepatan m!

Gambar 2.8. a) beban m mengalami gaya F
b) uraian gaya F dan m g.

Jawaban
Uraikan dahulu gaya pada beban m (gambar 2.8.) sehingga tampak gaya-gaya mana saja yang mempengaruhi gerakan m turun. Berdasarkan gambar 2.8. tersebut tampak gaya-gaya yang mempengaruhi gerakan m adalah gaya mg Sin 37° dan F Cos 37°.

Sesuai dengan Hukum II Newton

2.

Sistem Katrol
Sistem Katrol terdiri atas katrol, tali dan benda. Pada bagian ini Anda akan mempelajari sistem katrol tanpa gesekan. Pemakaian prinsip Hukum II Newton pada suatu sistem katrol diperlihatkan oleh gambar 2.9. berikut:

Gambar 2.9
m1 dan m2 tergantung pada katrol


Dari gambar 2.9. nampak bahwa T: gaya tegangan tali Beban m1 dan m2 dihubungkan dengan tali ringan melalui katrol: K tanpa gesekan.

Apa yang terjadi jika m1 <>2? Jelas m1 akan naik, m2 akan turun sesuai dengan Hukum II Newton. Pada beban m1 berlaku:

SF
T-m1.g
SF
m2.g – T

= m.a T ® w1 = m1.a
= m1.a (arah gerak naik) pada beban m2 berlaku:
= m.a w2 ® T = m2.a atau
= m2.a (arah gerak turun)

Jika gaya-gaya pada m1 dan m2 kita gabung, akan didapatkan

T – m1.g + m2.g – T
m1.g + m2.g
= m1a + m2.a
= (m1 + m2) a

Kedua beban mengalami percepatan sebesar



Coba Anda perhatikan lagi gambar 2.9, seandainya besar m1 = 4 kg, m2 = 6 kg dan g = 10 ms1, dapatkah Anda menghitung berapa besar

a.
b.

percepatan kedua beban?
besar tegangan tali?

Jika hitungan Anda benar akan didapatkan jawaban

a.
b.
a = 2 ms-2
T = 48 N

Untuk lebih memantapkan pemahaman Anda, perhatikan contoh berikut: Beban m1 = 4 kg terletak di atas bidang datar yang licin dihubungkan dengan tali tanpa gesekan melalui katrol ke beban m2 = 1 kg yang tergantung.

Gambar 2.10.
m1 terletak di atas meja,
m2 tergantung

Karena bidang licin, m1 bergerak ke kanan, m2 bergerak turun, gaya-gaya yang searah dengan gesekan positif yang berlawanan dengan arah gesekan negatif.

Sesuai dengan Hukum II Newton pada m1 berlaku

SF
T

= m.a
= m1.a

Pada m2, berlaku m2g – T = m2a.

Jika keduanya digabung T + m2.g – T = m1.a + m2.a

Jika percepatan gravitasi bumi 10 ms-2 maka besar percepatan kedua beban


Besar T, dapat dihitung dari T = m2.a = 4 . 2 = 8 N

Gerak Parabola

Benda-benda yang melakukan gerakan peluru dipengaruhi oleh beberapa faktor. Pertama, benda tersebut bergerak karena ada gaya yang diberikan. Mengenai Gaya, selengkapnya kita pelajari pada pokok bahasan Dinamika (Dinamika adalah ilmu fisika yang menjelaskan gaya sebagai penyebab gerakan benda dan membahas mengapa benda bergerak demikian). Pada kesempatan ini, kita belum menjelaskan bagaimana proses benda-benda tersebut dilemparkan, ditendang dan sebagainya. Kita hanya memandang gerakan benda tersebut setelah dilemparkan dan bergerak bebas di udara hanya dengan pengaruh gravitasi. Kedua, seperti pada Gerak Jatuh Bebas, benda-benda yang melakukan gerak peluru dipengaruhi oleh gravitasi, yang berarah ke bawah (pusat bumi) dengan besar g = 9,8 m/s2. Ketiga, hambatan atau gesekan udara. Setelah benda tersebut ditendang, dilempar, ditembakkan atau dengan kata lain benda tersebut diberikan kecepatan awal hingga bergerak, maka selanjutnya gerakannya bergantung pada gravitasi dan gesekan alias hambatan udara. Karena kita menggunakan model ideal, maka dalam menganalisis gerak peluru, gesekan udara diabaikan.

Pengertian Gerak Peluru

Gerak peluru merupakan suatu jenis gerakan benda yang pada awalnya diberi kecepatan awal lalu menempuh lintasan yang arahnya sepenuhnya dipengaruhi oleh gravitasi.

Karena gerak peluru termasuk dalam pokok bahasan kinematika (ilmu fisika yang membahas tentang gerak benda tanpa mempersoalkan penyebabnya), maka pada pembahasan ini, Gaya sebagai penyebab gerakan benda diabaikan, demikian juga gaya gesekan udara yang menghambat gerak benda. Kita hanya meninjau gerakan benda tersebut setelah diberikan kecepatan awal dan bergerak dalam lintasan melengkung di mana hanya terdapat pengaruh gravitasi.

Mengapa dikatakan gerak peluru ? kata peluru yang dimaksudkan di sini hanya istilah, bukan peluru pistol, senapan atau senjata lainnya. Dinamakan gerak peluru karena mungkin jenis gerakan ini mirip gerakan peluru yang ditembakkan.

Jenis-jenis Gerak Parabola

Dalam kehidupan sehari-hari terdapat beberapa jenis gerak parabola.

Pertama, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah. Dalam kehidupan sehari-hari terdapat banyak gerakan benda yang berbentuk demikian. Beberapa di antaranya adalah gerakan bola yang ditendang oleh pemain sepak bola, gerakan bola basket yang dilemparkan ke ke dalam keranjang, gerakan bola tenis, gerakan bola volly, gerakan lompat jauh dan gerakan peluru atau rudal yang ditembakan dari permukaan bumi.



Kedua, gerakan benda berbentuk parabola ketika diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal, sebagaimana tampak pada gambar di bawah. Beberapa contoh gerakan jenis ini yang kita temui dalam kehidupan sehari-hari, meliputi gerakan bom yang dijatuhkan dari pesawat atau benda yang dilemparkan ke bawah dari ketinggian tertentu.




Ketiga, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dari ketinggian tertentu dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah.




Menganalisis Gerak Parabola

Bagaimana kita menganalisis gerak peluru ? Eyang Galileo telah menunjukan jalan yang baik dan benar. Beliau menjelaskan bahwa gerak tersebut dapat dipahami dengan menganalisa komponen-komponen horisontal dan vertikal secara terpisah. Gerak peluru adalah gerak dua dimensi, di mana melibatkan sumbu horisontal dan vertikal. Jadi gerak parabola merupakan superposisi atau gabungan dari gerak horisontal dan vertikal. Kita sebut bidang gerak peluru sebagai bidang koordinat xy, dengan sumbu x horisontal dan sumbu y vertikal. Percepatan gravitasi hanya bekerja pada arah vertikal, gravitasi tidak mempengaruhi gerak benda pada arah horisontal.

Percepatan pada komponen x adalah nol (ingat bahwa gerak peluru hanya dipengaruhi oleh gaya gravitasi. Pada arah horisontal atau komponen x, gravitasi tidak bekerja). Percepatan pada komponen y atau arah vertikal bernilai tetap (g = gravitasi) dan bernilai negatif /-g (percepatan gravitasi pada gerak vertikal bernilai negatif, karena arah gravitasi selalu ke bawah alias ke pusat bumi).

Gerak horisontal (sumbu x) kita analisis dengan Gerak Lurus Beraturan, sedangkan Gerak Vertikal (sumbu y) dianalisis dengan Gerak Jatuh Bebas.

Untuk memudahkan kita dalam menganalisis gerak peluru, mari kita tulis kembali persamaan Gerak Lurus Beraturan (GLB) dan Gerak Jatuh Bebas (GJB).




Sebelum menganalisis gerak parabola secara terpisah, terlebih dahulu kita amati komponen Gerak Peluru secara keseluruhan.

Pertama, gerakan benda setelah diberikan kecepatan awal dengan sudut teta terhadap garis horisontal.




Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan v0y merupakan kecepatan awal pada sumbu y. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x. Pada titik tertinggi lintasan gerak benda, kecepatan pada arah vertikal (vy) sama dengan nol.


Kedua, gerakan benda setelah diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal.




Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan Kecepatan awal pada sumbu vertikal (voy) = 0. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x.


Menganalisis Komponen Gerak Parabola secara terpisah

Sekarang, mari kita turunkan persamaan untuk Gerak Peluru. Kita nyatakan seluruh hubungan vektor untuk posisi, kecepatan dan percepatan dengan persamaan terpisah untuk komponen horisontal dan vertikalnya. Gerak peluru merupakan superposisi atau penggabungan dari dua gerak terpisah tersebut

Komponen kecepatan awal

Terlebih dahulu kita nyatakan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y.

Catatan : gerak peluru selalu mempunyai kecepatan awal. Jika tidak ada kecepatan awal maka gerak benda tersebut bukan termasuk gerak peluru. Walaupun demikian, tidak berarti setiap gerakan yang mempunyai kecepatan awal termasuk gerak peluru

Karena terdapat sudut yang dibentuk, maka kita harus memasukan sudut dalam perhitungan kecepatan awal. Mari kita turunkan persamaan kecepatan awal untuk gerak horisontal (v0x) dan vertikal (v0y) dengan bantuan rumus Sinus, Cosinus dan Tangen. Dipahami dulu persamaan sinus, cosinus dan tangen di bawah ini.




Berdasarkan bantuan rumus sinus, cosinus dan tangen di atas, maka kecepatan awal pada bidang horisontal dan vertikal dapat kita rumuskan sebagai berikut :




Keterangan : v0 adalah kecepatan awal, v0x adalah kecepatan awal pada sumbu x, v0y adalah kecepatan awal pada sumbu y, teta adalah sudut yang dibentuk terhadap sumbu x positip.


Kecepatan dan perpindahan benda pada arah horisontal

Kita tinjau gerak pada arah horisontal atau sumbu x. Sebagaimana yang telah dikemukakan di atas, gerak pada sumbu x kita analisis dengan Gerak Lurus Beraturan (GLB). Karena percepatan gravitasi pada arah horisontal = 0, maka komponen percepatan ax = 0. Huruf x kita tulis di belakang a (dan besaran lainnya) untuk menunjukkan bahwa percepatan (atau kecepatan dan jarak) tersebut termasuk komponen gerak horisontal atau sumbu x. Pada gerak peluru terdapat kecepatan awal, sehingga kita gantikan v dengan v0.

Dengan demikian, kita akan mendapatkan persamaan Gerak Peluru untuk sumbu x :



Keterangan : vx adalah kecepatan gerak benda pada sumbu x, v0x adalah kecepatan awal pada sumbu x, x adalah posisi benda, t adalah waktu tempuh, x0 adalah posisi awal. Jika pada contoh suatu gerak peluru tidak diketahui posisi awal, maka silahkan melenyapkan x0.


Perpindahan horisontal dan vertikal

Kita tinjau gerak pada arah vertikal atau sumbu y. Untuk gerak pada sumbu y alias vertikal, kita gantikan x dengan y (atau h = tinggi), v dengan vy, v0 dengan voy dan a dengan -g (gravitasi). Dengan demikian, kita dapatkan persamaan Gerak Peluru untuk sumbu y :




Keterangan : vy adalah kecepatan gerak benda pada sumbu y alias vertikal, v0y adalah kecepatan awal pada sumbu y, g adalah gravitasi, t adalah waktu tempuh, y adalah posisi benda (bisa juga ditulis h), y0 adalah posisi awal.

Berdasarkan persamaan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y yang telah kita turunkan di atas, maka kita dapat menulis persamaan Gerak Peluru secara lengkap sebagai berikut :




Setelah menganalisis gerak peluru secara terpisah, baik pada komponen horisontal alias sumbu x dan komponen vertikal alias sumbu y, sekarang kita menggabungkan kedua komponen tersebut menjadi satu kesatuan. Hal ini membantu kita dalam menganalisis Gerak Peluru secara keseluruhan, baik ditinjau dari posisi, kecepatan dan waktu tempuh benda. Pada pokok bahasan Vektor dan Skalar telah dijelaskan teknik dasar metode analitis. Sebaiknya anda mempelajarinya terlebih dahulu apabila belum memahami dengan baik.

Persamaan untuk menghitung posisi dan kecepatan resultan dapat dirumuskan sebagai berikut.



Pertama, vx tidak pernah berubah sepanjang lintasan, karena setelah diberi kecepatan awal, gerakan benda sepenuhnya bergantung pada gravitasi. Nah, gravitasi hanya bekerja pada arah vertikal, tidak horisontal. Dengan demikian vx bernilai tetap.

Kedua, pada titik tertinggi lintasan, kecepatan gerak benda pada bidang vertikal alias vy = 0. pada titik tertinggi, benda tersebut hendak kembali ke permukaan tanah, sehingga yang bekerja hanya kecepatan horisontal alias vx, sedangkan vy bernilai nol. Walaupun kecepatan vertikal (vy) = 0, percepatan gravitasi tetap bekerja alias tidak nol, karena benda tersebut masih bergerak ke permukaan tanah akibat tarikan gravitasi. jika gravitasi nol maka benda tersebut akan tetap melayang di udara, tetapi kenyataannya tidak teradi seperti itu.

Ketiga, kecepatan pada saat sebelum menyentuh lantai biasanya tidak nol.

Pembuktian Matematis Gerak Peluru = Parabola


Sekarang Gurumuda ingin menunjukkan bahwa jalur yang ditempuh gerak peluru merupakan sebuah parabola, jika kita mengabaikan hambatan udara dan menganggap bahwa gravitasi alias g bernilai tetap. Untuk menunjukkan hal ini secara matematis, kita harus mendapatkan y sebagai fungsi x dengan menghilangkan/mengeliminasi t (waktu) di antara dua persamaan untuk gerak horisontal dan vertikal, dan kita tetapkan x0 = y0 = 0.

Gerak Melingkar

Gerak Melingkar adalah gerak suatu benda yang membentuk lintasan berupa lingkaran mengelilingi suatu titik tetap. Agar suatu benda dapat bergerak melingkar ia membutuhkan adanya gaya yang selalu membelokkan-nya menuju pusat lintasan lingkaran. Gaya ini dinamakan gaya sentripetal. Suatu gerak melingkar beraturan dapat dikatakan sebagai suatu gerak dipercepat beraturan, mengingat perlu adanya suatu percepatan yang besarnya tetap dengan arah yang berubah, yang selalu mengubah arah gerak benda agar menempuh lintasan berbentuk lingkaran.



Besaran gerak melingkar

Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah , dan atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan berturut-turut dengan , dan .

Besaran gerak lurus dan melingkar

Gerak lurus
Gerak melingkar

Besaran
Satuan (SI)
Besaran
Satuan (SI)

poisisi
m
sudut
rad

kecepatan
m/s
kecepatan sudut
rad/s

percepatan
m/s2
percepatan sudut
rad/s2

-
-
perioda
s

-
-
radius
m



Jenis gerak melingkar

Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya , yaitu:
gerak melingkar beraturan, dan
gerak melingkar berubah beraturan.
Gerak melingkar beraturan

Gerak Melingkar Beraturan (GMB) adalah gerak melingkar dengan besar kecepatan sudut tetap. Besar Kecepatan sudut diperolah dengan membagi kecepatan tangensial dengan jari-jari lintasan



Arah kecepatan linier dalam GMB selalu menyinggung lintasan, yang berarti arahnya sama dengan arah kecepatan tangensial . Tetapnya nilai kecepatan akibat konsekuensi dar tetapnya nilai . Selain itu terdapat pula percepatan radial yang besarnya tetap dengan arah yang berubah. Percepatan ini disebut sebagai percepatan sentripetal, di mana arahnya selalu menunjuk ke pusat lingkaran.



Bila adalah waktu yang dibutuhkan untuk menyelesaikan satu putaran penuh dalam lintasan lingkaran , maka dapat pula dituliskan



Kinematika gerak melingkar beraturan adalah



dengan adalah sudut yang dilalui pada suatu saat , adalah sudut mula-mula dan adalah kecepatan sudut (yang tetap nilainya).
Gerak melingkar berubah beraturan

Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut tetap. Dalam gerak ini terdapat percepatan tangensial (yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial ).



Kinematika GMBB adalah







dengan adalah percepatan sudut yang bernilai tetap dan adalah kecepatan sudut mula-mula.
Gerak berubah beraturan

Gerak melingkar dapat dipandang sebagai gerak berubah beraturan. Bedakan dengan gerak lurus berubah beraturan (GLBB). Konsep kecepatan yang berubah kadang hanya dipahami dalam perubahan besarnya, dalam gerak melingkar beraturan (GMB) besarnya kecepatan adalah tetap, akan tetapi arahnya yang berubah dengan beraturan, bandingkan dengan GLBB yang arahnya tetap akan tetapi besarnya kecepatan yang berubah beraturan.
Gerak berubah beraturan

Kecepatan
GLBB
GMB

Besar
berubah
tetap

Arah
tetap
berubah

Gerak Dan Gaya

Dalam fisika dipelajari 3 gerak yakni Gerak lurus, gerak Melingkar, dan Gerak parabola (peluru)Untuk Gerak lurus dibagi menjadi 2 yaitu Gerak Lurus beraturan (GLB) dan gerak berubah beraturan (GLBB)

Dengan ketentuan rumus :

GLB : Laju v = konstan

Percepatan a = 0

Rumus Umum : S = V. t

GLBB : Laju V = berubah-ubah

Percepatan a = konstan

Rumus Umum :

V = Vo ± a.t

S = Vo.t ± 1/2a.t2

V2 = Vo2 ± 2a.s


+a percepatan, misal mobil di gas

-a perlambatan, misal mobil direm

Catatan : untuk gerak vertikal percepatan diganti dengan g (percepatan gravitasi)

Soal

Sebuah mobil bergerak dengan kecepatan 72 km/jam direm sehingga kecepatannya berkurang secara teratur menjadi 18 km/jam dalam waktu 5 detik, maka jarak yang ditempuh selama detik kelima adalah…

Penyelesaian

Diketahui Vo=72 km/jam = 20 m/det

V = 18 km/jam= 5 m/det

t = 5 det

jawaban secara umum

V = Vo – a.t ; tanda –a karena diperlambat

5 = 20 – a.5

-15 = -5a

a = 3 m/det2

S = Vo.t – ½ a.t2

S = 20.5 – ½.3.52

= 100 – 37,5 = 62,5 m

Cara Praktis

S = V rata-rata . t

V rata-rata = (20 + 5)/2 = 12,5

S = V. t = 12,5 m/det . 5 det = 62,5 m

hukum kepler

Karya Kepler sebagian dihasilkan dari data-data hasil pengamatan yang dikumpulkan Ticho Brahe mengenai posisi planet-planet dalam geraknya di luar angkasa. Hukum ini telah dicetuskan Kepler setengah abad sebelum Newton mengajukan ketiga Hukum-nya tentang gerak dan hukum gravitasi universal. Di antara hasil karya Kepler, terdapat tiga penemuan yang sekarang kita kenal sebagai Hukum Kepler mengenai gerak planet.

Hukum I Kepler

Lintasan setiap planet ketika mengelilingi matahari berbentuk elips, di mana matahari terletak pada salah satu fokusnya.

Kepler tidak mengetahui alasan mengapa planet bergerak dengan cara demikian. Ketika mulai tertarik dengan gerak planet-planet, Newton menemukan bahwa ternyata hukum-hukum Kepler ini bisa diturunkan secara matematis dari hukum gravitasi universal dan hukum gerak Newton. Newton juga menunjukkan bahwa di antara kemungkinan yang masuk akal mengenai hukum gravitasi, hanya satu yang berbanding terbalik dengan kuadrat jarak yang konsisten dengan Hukum Kepler.

Perhatikan orbit elips yang dijelaskan pada Hukum I Kepler. Dimensi paling panjang pada orbit elips disebut sumbu mayor alias sumbu utama, dengan setengah panjang a. Setengah panjang ini disebut sumbu semiutama alias semimayor (sambil lihat gambar di bawah ya).

F1 dan F2 adalah titik Fokus. Matahari berada pada F1 dan planet berada pada P. Tidak ada benda langit lainnya pada F2. Total jarak dari F1 ke P dan F2 ke P sama untuk semua titik dalam kurva elips. Jarak pusat elips (O) dan titik fokus (F1 dan F2) adalah ea, di mana e merupakan angka tak berdimensi yang besarnya berkisar antara 0 sampai 1, disebut juga eksentrisitas. Jika e = 0 maka elips berubah menjadi lingkaran. Kenyataanya, orbit planet berbentuk elips alias mendekati lingkaran. Dengan demikian besar eksentrisitas tidak pernah bernilai nol. Nilai e untuk orbit planet bumi adalah 0,017. Perihelion merupakan titik yang terdekat dengan matahari, sedangkan titik terjauh adalah aphelion.

Pada Persamaan Hukum Gravitasi Newton, telah kita pelajari bahwa gaya tarik gravitasi berbanding terbalik dengan kuadrat jarak (1/r2), di mana hal ini hanya bisa terjadi pada orbit yang berbentuk elips atau lingkaran saja.

Contoh soal Hukum I Kepler :

Komet Halley bergerak sepanjang orbit elips mengitari matahari. Pada perihelion, komet Halley berjarak 8,75 x107 km dari matahari, sedangkan pada aphelion berjarak 5,26 x 109 km dari matahari. Berapakah eksentrisitas dari orbit komet halley

Panduan jawaban :

Panjang sumbu utama sama dengan total jarak komet ke matahari ketika komet berada di perihelion dan aphelion.

Panjang sumbu utama adalah 2a, dengan demikian :

Pada Perihelion, jarak komet Halley dengan matahari diperoleh dari (sambil perhatikan gambar di atas) :

a – ea = a(1-e)

Jarak komet Halley dengan matahari ketika komet Halley berada pada perihelion adalah 8,75 x107 km. Dengan demikian, eksentrisitas komet Halley adalah :

Nilai eksentrisitas komet halley mendekati 1. Ini menunjukkan bahwa orbit halley sangat panjang….

Hukum II Kepler

Luas daerah yang disapu oleh garis antara matahari dengan planet adalah sama untuk setiap periode waktu yang sama.

Hal yang paling utama dalam Hukum II Kepler adalah kecepatan sektor mempunyai harga yang sama pada semua titik sepanjang orbit yang berbentuk elips.


Hukum III Kepler

Kuadrat waktu yang diperlukan oleh planet untuk menyelesaikan satu kali orbit sebanding dengan pangkat tiga jarak rata-rata planet-planet tersebut dari matahari.

Jika T1 dan T2 menyatakan periode dua planet, dan r1 dan r2 menyatakan jarak rata-rata mereka dari matahari, maka

Newton menunjukkan bahwa Hukum III Kepler juga bisa diturunkan secara matematis dari Hukum Gravitasi Universal dan Hukum Newton tentang gerak dan gerak melingkar. Sekarang mari kita tinjau Hukum III Kepler menggunakan pendekatan Newton.

Terlebih dahulu kita tinjau kasus khusus orbit lingkaran, yang merupakan kasus khusus dari orbit elips. Semoga dirimu belum melupakan Hukum Newton dan pelajaran Gerak Melingkar…

Sekarang kita masukan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum Newton II :

m1 adalah massa planet, mM adalah massa matahari, r1 adalah jarak rata-rata planet dari matahari, v1 merupakan laju rata-rata planet pada orbitnya.

Waktu yang diperlukan sebuah planet untuk menyelesaikan satu orbit adalah T1, di mana jarak tempuhnya sama dengan keliling lingkaran, 2 phi r1. Dengan demikian, besar v1 adalah :

Misalnya persamaan 1 kita turunkan untuk planet venus (planet 1). Penurunan persamaan yang sama dapat digunakan untuk planet bumi (planet kedua).

T2 dan r2 adalah periode dan jari-jari orbit planet kedua. Sekarang coba anda perhatikan persamaan 1 dan persamaan 2. Perhatikan bahwa ruas kanan kedua persamaan memiliki nilai yang sama. Dengan demikian, jika kedua persamaan ini digabungkan, akan kita peroleh :

Persamaan ini adalah Hukum III Kepler…

Kita juga bisa menurunkan persamaaan untuk menghitung besarnya periode gerak planet (T) dengan cara lain. Pertama terlebih dahulu kita turunkan untuk kasus gerak melingkar.

Sebelumnya kita telah mensubtitusikan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum II Newton :

Pada pembahasan mengenaigerak melingkar beraturan, kita mempelajari bahwa laju v adalah perbandingan jarak tempuh dalam satu kali putaran (2phir) dengan periode (waktu yang dibutuhkan untuk melakukan satu kali putaran), yang secara matematis dirumuskan sebagai berikut :

Pada persamaan ini tampak bahwa periode dalam orbit lingkaran sebanding dengan pangkat 3/2 dari jari-jari orbit. Newton menunjukkan bahwa hubungan ini juga berlaku untuk orbit elips, di mana jari-jari orbit lingkaran (r) diganti dengan setengah sumbu utama a

HUKUM HOOKE DAN ELASTISITAS

ELASTISITAS
Elastisitas adalah : Kecenderungan pada suatu benda untuk berubah dalam bentuk baik panjang, lebar maupun tingginya, tetapi massanya tetap, hal itu disebabkan oleh gaya-gaya yang menekan atau menariknya, pada saat gaya ditiadakan bentuk kembali seperti semula.

Tegangan (Stress)
Stress didefinisikan sebagai : Gaya F persatuan luas (A).





Jika suatu baTang homogen yang mendapat tarikan atau gaya desak dilakukan pemotongan secara tegak




Karena tiap bagian saling tarik menarik atau desak mendesak maka tegangan yang dihasilkan disebut tegangan tarik atau tegangan desak.

Regangan (Strain)
Yang dimaksud tegangan disini adalah mengenai perubahan relatif deri ukuran-ukuran atau bentuk suatu benda yang mengalami tegangan.
Regangan karena tarikan di dalam batang didefinisikan sebagai perbandingan dari tambahan panjang terhadap panjang asli.




Regangan karena gaya geser didefinisikan sebagai tangensial sudut u karena u kecil sekali, maka :






Modulus Kelentingan.
Perbandingan antara suatu tegangan (stress) terhadap regangannya (strain) disebut : “MODULUS KELENTINGAN”.
Modulus kelentingan linier atau disebut juga modulus young.
tegangan tarik/desak

Modulus Young (Y) =
regangan tarik/desak




43
000ck60pc0=0201k64150+0002k5202000F07p0e2g2a0s20=262-520k20x272320202320202023202020232020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020

Diktat Fisika XI-1
22222222222222222D2a2m2r2ia2n2i 222220000030004002205c0021400c002140022200022222222222222222222222222222222222222222222222222222
2222222222222222220000030004002205c0021400c0021400222000222222222222222222222222222222222222222222222222222222222222222
000000000000000000000000030004000000000000000000000000000000ffffffffffffffffffffffff0000000000000000000000000000000000000000000


Diagram tegangan-regangan jenis logam yang tertarik.












A : Batas kelentingan
B : Titik kritis
C : Titik patah






Energi Potensial Pegas
Jika sebuah pegas kita gantungkan, mempunyai konstanta pegas k. Yaitu : Besar gaya tiap pertambahan panjang sebesar satu satuan panjang.
Dengan demikian jika pegas kita tarik dengan gaya F
tangan



maka pada pegas
bekerja gaya pegas F Jadi F
pegas pegas
yamh arahnya berlawanan dengan F
= - gaya oleh tangan pada pegas.
.
tangan

(Tanda (-) hanya menunjukkan arah).



Jika digambarkan dalam grafik hubungan antara F dan x sebagai pertambahan panjang, berupa GARIS LURUS.


Energi potensial pegas didefinisikan sebagai : Dapat dicari dari Luas grafik F terhadap x.



Usaha yang diperlukan untuk regangan x – x
1 2
dapat dituliskan sebagai :




Susunan Pegas

disusun paralel maka diperoleh konstanta pegas



44
0000000000000000000000000000000000000000000000000000000000000000000030004000000000000000000000000000000ffffffffffffffffffffffff
2222222222222222222222222222222222222220000030004002205c0021400c00214002220002222222222222222222222222222222222222222222
0000022222222222D22ik2t2a2t 2F2is2ik2a22X2I2-122222222222222222222222222220000030004002205c0021400c0021400222000222222222222222222222222
22222222222222222D2a2m2r2ia2n2i 22222222222222220000030004002205c0021400c0021400222000222222222222222222222222222222222222222222
22222222222222222222222222222222222222222222222220000030004002205c0021400c002140022200022222222222222222222222222222222
gabungan (k )
P


Jika dua buah pegas dengan konstanta pegas k
1
dan k
2
disusun seri maka diperoleh konstanta pegas gabungan
(K )
S



Dengan demikian berlaku untuk beberapa buah pegas.








SOAL LATIHAN

1. Sepotong baja yang panjangnya 4 m dan diameternya 9 cm dipakai untuk mengangkat beban yang
massanya 80.000 kg. Modulus Young = 1,9 x 1011 N/m2. Berapakah pertambahan panjang baja itu ?
2. Modulus Young suatu kawat adalah 6,0 x 1010 Pa.
Untuk memperoleh pertambahan panjang sebesar 2 % berapakah tegangan yang diperlukan
(stress) ?
3. Suatu pegas digantungkan pada lift. Jika lift berhenti beban 5 kg digantungkan pada pegas ternyata
bertambah panjang 2,5 cm.
Hitunglah pertambahan panjang pegas jika lift bergerak keatas dengan percepatan 2 m/s2. (g = 10 m/s2).
4. Sebuah pegas panjangnya 10 cm, kemudian ditarik dengan gaya 100 N. Panjangnya menjadi 12 cm.
Hitunglah :
a. Gaya yang diperlukan agar panjangnya 15 cm.
b. Hitung energi potensial pegas saat panjangnya 15 cm.
5. Sebuah pegas bertambah panjang 1 cm jika diberi beban 10 N. Hitunglah : .. a. Energi potensial pegas pada saat pertambahan panjangnya 3 cm.
b. Berapa usaha untuk meregangkan pegas dari 2 cm menjadi 4 cm.
6. Lihat gambar di bawah ni.













Hitunglah konstanta pegas total susunan pegas di atas.



7. Lihat dan amati gambar di bawah ini.












Hitunglah :
a. pertambahan panjang masing-masing pegas. b. Hitung gaya yang bekerja
c. Hitung energi potensial pegas gabungan.

8. Suatu pegas digantungkan di atap sebuah lift. Jika saat lift diam gaya 10 N menyebabkan pegas
bertambah panjang 1 cm. Hitunglah pertambahan panjang pegas, jika :
a. lift ke atas dengan percepatan 2 m/s2
b. lift ke bawah dengan percepatan 2 m/s2
9. Sebuah specimen baja berukuran 10 cm x 2 cm x 2 cm ditarik dengan gaya 5.000 N
beertambah panjang
5 mm. Hitunglah modulus Young bahan.

D A Y A

Daya (P) adalah usaha yang dilakukan tiap satuan waktu. P =
P = daya ; W = usaha ; t = waktu

Daya termasuk besaran scalar yang dalam satuan MKS mempunyai satuan watt atau J/s

Satuan lain adalah : 1 HP = 1 DK = 1 PK = 746 watt

HP = Horse power ; DK = Daya kuda ; PK = Paarden Kracht

1 Kwh adalah satuan energi besarnya = 3,6 .106 watt.detik = 3,6 . 106 joule


KONSEP ENERGI

Suatu system dikatakan mempunyai energi/tenaga, jika system tersebut mempunyai kemampuan untuk melakukan usaha. Besarnya energi suatu system sama dengan besarnya usaha yang mampu ditimbulkan oleh system tersebut. Oleh karena itu, satuan energi sama dengan satuan usaha dan energi juga merupakan besaran scalar.

Dalam fisika, energi dapat digolongkan menjadi beberapa macam antara lain :
Energi mekanik (energi kinetik + energi potensial) , energi panas , energi listrik, energi kimia, energi nuklir, energi cahaya, energi suara, dan sebagainya.

Energi tidak dapat diciptakan dan tidak dapat dimusnahkan yang terjadi hanyalah transformasi/perubahan suatu bentuk energi ke bentuk lainnya, misalnya dari energi mekanik diubah menjadi energi listrik pada air terjun.


ENERGI KINETIK

Energi kinetik adalah energi yang dimiliki oleh setiap benda yang bergerak. Energi kinetik suatu benda besarnya berbanding lurus dengan massa benda dan kuadrat kecepatannya.

Ek = ½ m v2

Ek = Energi kinetik ; m = massa benda ; v = kecepatan benda

SATUAN


BESARAN SATUAN MKS SATUAN CGS
Energi kinetik (Ek) joule erg
Massa (m) Kg gr
Kecepatan (v) m/det cm/det

Usaha = perubahan energi kinetik.





57
Diktat Fisika XI-1
Damriani


W = Ek = Ek2 – Ek1




ENERGI POTENSIAL GRAVITASI

Energi potensial gravitasi adalah energi yang dimiliki oleh suatu benda karena pengaruh tempatnya (kedudukannya). Energi potensial ini juga disebut energi diam, karena benda yang diam-pun dapat memiliki tenaga potensial.

Sebuah benda bermassa m digantung seperti di bawah ini.



g



h








Jika tiba-tiba tali penggantungnya putus, benda akan jatuh.
Maka benda melakukan usaha, karena adanya gaya berat (w) yang menempuh jarak h.
Besarnya Energi potensial benda sama dengan usaha yang sanggup dilakukan gaya beratnya selama jatuh menempuh jarak h.

Ep = w . h = m . g . h


Ep = Energi potensial , w = berat benda , m = massa benda ; g = percepatan grafitasi ; h = tinggi benda

SATUAN


BESARAN SATUAN MKS SATUAN CGS
Energi Potensial (Ep) joule erg
Berat benda (w) newton dyne
Massa benda (m) Kg gr
Percepatan gravitasi (g) m/det2 cm/det2
Tinggi benda (h) m cm

Energi potensial gravitasi tergantung dari :
percepatan gravitasi bumi kedudukan benda
massa benda



58
Diktat Fisika XI-1
Damriani


ENERGI POTENSIAL PEGAS

Energi potensial yang dimiliki benda karena elastik pegas.

Gaya pegas (F) = k . x
Ep Pegas (Ep) = ½ k. x2

k = konstanta gaya pegas ; x = regangan

Hubungan usaha dengan Energi Potensial :

W = Ep = Ep1 – Ep2



ENERGI MEKANIK

Energi mekanik (Em) adalah jumlah antara energi kinetik dan energi potensial suatu benda.

Em = Ek + Ep



HUKUM KEKEKALAN ENERGI MEKANIK

Energi tidak dapat diciptakan dan tidak dapat dimusnahkan. Jadi energi itu adalah KEKAL.

Em1 = Em2
Ek1 + Ep1 = Ek2 + Ep2